Sorry, your browser doesn't support Java(tm).

 

Геометрия

Многогранники и многоугольники

Вращающиеся кольца тетраэдров

Для изготовления модели такого кольца достаточно одного листа бумаги. В случае n=6 скопируйте приведенную здесь диаграмму:

 

 

 

 

Вырежьте ее, сделайте сгибы по внутренним линиям - по штриховым линиям вверх, а по пунктирным вниз - и приклейте клапаны в соответствии с буквенными обозначениями (в случае, когда n кратно 4, концы соединяются несколько иначе).

Поскольку у такого многогранника два типа ребер, он неправильный, и вместо равносторонних треугольников можно рассматривать равнобедренные. Сделав двойные ребра достаточно короткими по сравнению с остальными ребрами, можно добиться того, что и при n=6 кольцо удастся полностью вывернуть.На мой взгляд, самое красивое кольцо получается все же при n=10: при взгляде на кольцо сверху видна очень аккуратная звезда с пятью лучами; это не обязательно правильная пентаграмма, все зависит от того, в каком положении находится кольцо тетраэдров. При увеличении числа тетраэдров в кольце оно становится менее жестким, и симметрия частично теряется даже при четных n.

Флексагоны

Флексагоны - это многоугольники, сложенные из полосок бумаги прямоугольной или более сложной, изогнутой формы, которые обладают удивительным свойством: при перегибании флексагонов их наружные поверхности прячутся внутрь, а ранее скрытые поверхности неожиданно выходят наружу. Если бы не одно случайное обстоятельство - различие в формате английских и американских блокнотов, - флексагоны, возможно, не были бы открыты и по сей день и многие выдающиеся математики лишились бы удовольствия изучать их замысловатую структуру.Это произошло в конце 1939 года. Как-то раз Артур Х. Стоун, двадцатитрехлетний аспирант из Англии, изучавший математику в Принстоне, обрезал листы американского блокнота, чтобы подогнать их под привычный формат. Желая немного развлечься, Стоун принялся складывать из отрезанных полосок бумаги различные фигуры. Одна из сделанных им фигур оказалась особенно интересной. Перегнув полоску бумаги в трех местах и соединив концы, он получил правильный шестиугольник. Взяв этот шестиугольник за два смежных треугольника, Стоун подогнул противоположный угол вниз так, что его вершина совпала с центром фигуры. При этом Стоун обратил внимание на то, что когда шестиугольник раскрывался словно бутон, видимой становилась совсем другая поверхность. Если бы обе стороны исходного шестиугольника были разного цвета, то после перегибания видимая поверхность изменила бы свою окраску. Так был открыт самый первый флексагон с тремя поверхностями. Поразмыслив над ним ночь, Стоун наутро убедился в правильности своих чисто умозрительных заключений: оказалось, можно построить и более сложный шестиугольник с шестью поверхностями вместо трех. При этом Стоуну удалось найти настолько интересную конфигурацию, что он решил показать свои бумажные модели друзьям по университету. Вскоре "флексагоны" в изобилии стали появляться на столе во время завтраков и обедов, когда вся компания собиралась вместе. Для проникновения в тайны "флексологии" был организован "Флексагонный комитет". Кроме Стоуна, в него вошли аспирант-математик Бриан Таккермен, аспирант-физик Ричард Фейнман и молодой преподаватель математики Джон У. Тьюки. Постоянные модели были названы гексафлексагонами: "гекса" - из-за их шестиугольной формы (от греческого "гекс", что означает шесть), "флексагонами" - из-за их способности складываться (To flex[англ.] - складываться, сгибаться, гнуться). Первый построенный Стоуном флексагон был назван тригексафлексагоном, так как у него были три поверхности. Как сложить тригексафлексагон?Тригексафлексагон складывают из полоски бумаги, предварительно размеченной на 10 равносторонних треугольников:

Геометрические паркеты

Паркет (или мозаика) - бесконечное семейство многоугольников, покрывающее плоскость без просветов и двойных покрытий. Иногда паркетом называют покрытие плоскости правильными многоугольниками, при котором два многоугольника имеют либо общую сторону, либо общую вершину, либо совсем не имеют общих точек; но мы будем рассматривать как правильные, так и неправильные многоугольники.Итак, какими же многоугольниками можно замостить плоскость? Паркеты из одинаковых правильных многоугольниковСумма всех углов n-угольника равна 180°(n-2). Все углы правильного многоугольника равны; следовательно, каждый из них равен 180°(n-2)/n. В каждой вершине паркета сходится целое число углов; поэтому число 2·180° должно быть целым кратным числа 180°(n-2)/n. Преобразуем отношение этих чисел: Разность n-2 может принимать лишь значения 1, 2 или 4; поэтому n может быть равно только 3, 4 или 6. Значит, можно получить паркеты, составленные из правильных треугольников, квадратов или правильных шестиугольников.

 

Паркеты из разных правильных многоугольниковСначала выясним, какое количество различных правильных многоугольников (с одинаковыми длинами сторон) может находиться вокруг каждой точки. Величина угла правильного многоугольника должна находиться в интервале от 60° до 180° (не включая); следовательно, число многоугольников, находящихся в окрестности точки, должно быть больше 2 (360°/180°) и не может превышать 6 (360°/60°).Можно показать, что существуют следующие способы уложить паркет комбинациями правильных многоугольников: (3,12,12); (4,6,12); (6,6,6); (3,3,6,6) - два варианта паркета; (3,4,4,6) - четыре варианта; (3,3,3,4,4) - четыре варианта; (3,3,3,3,6); (3,3,3,3,3,3) (цифры в скобках - обозначения многоугольников, сходящихся в каждой вершине: 3 - правильный треугольник, 4 - квадрат, 6 - правильный шестиугольник, 12 - правильный двенадцатиугольник). Некоторые варианты паркета показаны на следующих иллюстрациях:

 

 

 

 

Hosted by uCoz